Federal Aviation Administration, DOT

- (a) Area A includes all directions in the adjacent dihedral angle that pass through the light source and intersect the common boundary plane at more than 10 degrees but less than 20 degrees; and
- (b) Area B includes all directions in the adjacent dihedral angle that pass through the light source and intersect the common boundary plane at more than 20 degrees.

§25.1397 Color specifications.

Each position light color must have the applicable International Commission on Illumination chromaticity coordinates as follows:

(a) Aviation red—

y is not greater than 0.335; and z is not greater than 0.002.

(b) Aviation green—

x is not greater than 0.440 - 0.320y; x is not greater than y - 0.170; and y is not less than 0.390 - 0.170x.

- (c) Aviation white—
- x is not less than 0.300 and not greater than 0.540;

y is not less than x-0.040; or $y_0-0.010$, whichever is the smaller; and

y is not greater than x+0.020 nor 0.636-0.400x; Where y_0 is the y coordinate of the Planckian radiator for the value of x considered.

[Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–27, 36 FR 12972, July 10, 1971]

$\S 25.1399$ Riding light.

- (a) Each riding (anchor) light required for a seaplane or amphibian must be installed so that it can—
- (1) Show a white light for at least 2 nautical miles at night under clear atmospheric conditions; and
- (2) Show the maximum unbroken light practicable when the airplane is moored or drifting on the water.
- (b) Externally hung lights may be used.

§25.1401 Anticollision light system.

- (a) General. The airplane must have an anticollision light system that—
- (1) Consists of one or more approved anticollision lights located so that their light will not impair the crew's vision or detract from the conspicuity of the position lights; and

- (2) Meets the requirements of paragraphs (b) through (f) of this section.
- (b) Field of coverage. The system must consist of enough lights to illuminate the vital areas around the airplane considering the physical configuration and flight characteristics of the airplane. The field of coverage must extend in each direction within at least 75 degrees above and 75 degrees below the horizontal plane of the airplane, except that a solid angle or angles of obstructed visibility totaling not more than 0.03 steradians is allowable within a solid angle equal to 0.15 steradians centered about the longitudinal axis in the rearward direction.
- (c) Flashing characteristics. The arrangement of the system, that is, the number of light sources, beam width, speed of rotation, and other characteristics, must give an effective flash frequency of not less than 40, nor more than 100 cycles per minute. The effective flash frequency is the frequency at which the airplane's complete anticollision light system is observed from a distance, and applies to each sector of light including any overlaps that exist when the system consists of more than one light source. In overlaps, flash frequencies may exceed 100, but not 180 cycles per minute.
- (d) *Color*. Each anticollision light must be either aviation red or aviation white and must meet the applicable requirements of §25.1397.
- (e) Light intensity. The minimum light intensities in all vertical planes, measured with the red filter (if used) and expressed in terms of "effective" intensities, must meet the requirements of paragraph (f) of this section. The following relation must be assumed:

$$I_e = \frac{\int_{t_1}^{t_2} I(t)dt}{0.2 + (t_2 - t_1)}$$

where:

Ie=effective intensity (candles).

I(t)=instantaneous intensity as a function of time.

 t_2 — t_I =flash time interval (seconds).

Normally, the maximum value of effective intensity is obtained when t_2 and t_1